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What is the Problem?
• Fundamental signal/imaging equation is

• Given the signal/image, retrieve the information given 
knowledge of 

- linear operator
- noise statistics

• This is an inverse problem



Representative Examples



Example Applications

• Medical imaging – CT and MRI
• X-ray Crystallography – Phase retrieval
• Astronomy 
• Microscopy
• Seismic prospecting
• Projection Tomography
• Diffraction Tomography
• Forensic image analysis
• Sound/source separation



Principal Publication

http://eleceng.dit.ie/papers/103.pdf

http://eleceng.dit.ie/papers/103.pdf
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Inverse Helmholtz Scattering:
Conventional Solution Method

Scattering 
equation

Single scattering
equation

Model



Farfield Approximation

Fourier transform

Inverse Fourier
transform



Imaging Equation
• The detected signal gives a limited 

spectrum of the scattering function 
characterised by a stationary
Point Spread Function (PSF)

• The result is based on the assumption 
that multiple scattering is negligible

• All non-ideal aspects of this equation 
including physical effects, signal 
detection noise etc. are compounded in 
an additive noise function so that the 
imaging equation becomes



Attributes of an Image

Image = (PSF) convolved (Object Function) + Noise

• Resolution: determined by the spread of the PSF

• Distortion: determined by accuracy of model for PSF

• Fuzziness: determined by accuracy of model for  
object function

• Noise: determined by accuracy of convolution model
for the image



Coherence .v. Incoherence

• In coherent imaging measures of both 
the amplitude and phase are detected

• In incoherent imaging only a measure of 
the amplitude (intensity) is detected



Image Types
• An image is usually a measure of the 

intensity of a scattered field

• The model for a coherent  image is

• The model for an incoherent image is



The Importance of Phase

Original image (top-left), amplitude spectrum displayed using a logarithmic scale 
(top-centre), phase modulus spectrum (top-right), reconstruction using both the 
amplitude and phase spectra (bottom-left), amplitude only reconstruction
(bottom-centre) and a phase only reconstruction (bottom-right).



Phase Retrieval Problem

• Important in applications where only the intensity
of a Born scattering wavefield can be measured

• This is always the case when the radiation is high    
frequency, e.g. X-ray Crystallography



The Fienup Algorithm

Iterative cycle 



Phase Imaging

Image generated of the Instantaneous Frequency



SAR FM Imaging 

Optical image          Synthetic Aperture Radar Images



Seismic FM Imaging



Deconvolution

• Problem: Given that

develop an algorithm to obtain an estimate of the 
object function

• Assumes a stationary process for image formation

• Many solutions to this problem which depend on:

- the PSF
- the criterion used
- characteristics of the noise



Case Study:
The Wiener Filter

Let si be a digital signal consisting of N real
numbers i = 0, 1, 2, …, N-1 that has been
generated via the time invariant linear 
process (where pi – the IRF – is known)

find an estimate for fi of the form 



Solution

• Consider the least squares error

• e is a minimum when

i.e. when



Solution (continued)

• Using the convolution and correlation 
theorems

• Since 



Signal Independent Noise

• We can not compute Qi because we do not 
know Fi or Ni

• However, we can expect that the information 
content of the signal fi will not correlate with 
the noise ni which means that 



Signal Independent 
Noise Solution

Given that the noise is signal independent

and



Computing the 
Signal-to-Noise-Ratio

• Problem: How can we find                        ?
• Suppose we have a linear stationary process 

whereby we can record a signal twice at 
different times.  Then



Autocorrelation and  
Cross-correlation Functions

• Auto-correlating:

• Cross-correlating:



Practical Implementation
• Given that the signal-to-noise power 

ratio is not usually known, i.e.
we approximate the filter as

• The value of the SNR (Signal-to-Noise-
Ratio) becomes a user defined constant



FFT Algorithm for the
Wiener Filter



FFT Algorithm for the 
Wiener Filter (continued)
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Signal Restoration using the
Wiener Filter



Image Restoration using 
the Wiener Filter

Image restoration using the Wiener filter. 

Original image (left), Gaussian PSF (center) and restoration 
after application of the Wiener filter (right) using a standard 
deviation of 3 pixels (for the Gaussian PSF) and an SNR=1.



A Further Example



Inverse Filtering in CT

An X-ray tomogram of a normal 
abdomen showing the Liver (1),
Stomach (2), Spleen (3) and 
Aorta (4).

• Back-projection function
is given by

• Reconstruction is given by



Filter Types



Image Reconstruction 
from Band-limited Data

Problem: Given

compute an estimate for 



Gerchberg-Papoulis Method



Weighting Function Method



Example Reconstruction

Reconstruction (bottom-right) of a test object (top-left) function from
band-limited data (top-right) using prior information (bottom-left).



Summary

• Most image restoration/reconstruction algorithms are 
based on a stationary convolution model with
additive noise

• The model assumes that the scattered field is 
detected/measured in the far field and is the result 
of single scattering processes

• Image coherence is determined by whether a 
measure of the phase information can be obtained



In the Following Lecture…

• We shall consider diffusion based 
models for the scattering of waves 
from random media 

• Develop inverse solutions for 
diffusion imaging

• Develop inverse solution for fractional 
diffusion imaging



Questions
+

Interval (10 Minutes)
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Scattering From 
Random Media

Basic Problem: Given that

compute                   for known 



Weak Scattering Model

Scattered wave amplitude in the far field is 
determined by the Fourier transform



Intensity of Scattered Field
• Intensity determined by Fourier transform of the 

autocorrelation function

• Requires a model for the autocorrelation function
that best characterises the random medium, i.e. the 
Power Spectral Density Function



Examples of 
Power Spectral Density Functions

• Gaussian Random Medium

• Random Fractal Medium



Problem with the 
Weak Field Solution

• Solution depends on the condition

which translates to:  Wavelength >> V

• Incompatible with imaging systems in which 
the resolution is based on

Wavelength ~ V



Strong Scattering Model

Physically sound but mathematically 
speaking, a mess waiting to happen!!



Diffusion Based Model

• Consider multiple scattering events to be 
analogous to random walks of ‘light rays’
propagating between scattering sites:  

• Image plane solution (for an infinite domain) is



Wave to Diffusion 
Equation Transformation



Conditional Equation



Diffusion Equation 
for the Intensity



Conditional Result



Justification

• Formally consider the surface to be at infinity  
so that diffusion occurs in the infinite domain

• Physically, light diffusers do not have a 
defined boundary



Example: 
Diffusion of Light Through Steam

Source imaged           Source imaged         Source convolved
through air                  through steam           with a Gaussian PSF



Inverse Solution 1: 
Restoration of a Diffused Image



Inverse Solution 2: 
Restoration of a Diffused Image



High-Emphasis Filter



Finite Impulse Response (FIR)
Filter: First Order



Finite Impulse Response (FIR)
Filter: Second Order



Example Application



Case Study: 
Fractional Diffusion Imaging

• Problem: How can we model intermediate 
scattering processes (not weak or strong)

• Solution: Consider a fractional diffusion model 
compounded in the fractional PDE



Principal Aim

• Derive an Optical Transfer Function that 
models the effect of light scattering from a 
tenuous random medium

• Tenuous medium?
~ 106  light scattering particles m-3

• Goal of presentation: To generate interest 
in the use of fractional dynamics for image 
synthesis, processing and analysis



‘Stardust in Perseus’
http://apod.nasa.gov/apod/ap071129.html

Applications include processing Hubble Space Telescope 
images when light has propagated through cosmic dust

http://apod.nasa.gov/apod/ap071129.html


2D Green’s Function Solution

Fractional diffusion equation and Green function approach: Exact solutions
E.K. Lenz et al, Physica A 360 (2006) 215–226



Asymptotic Solution

• For 

• Spatial solution at any time t is given by



A Fractal 
‘Impulse Response Function’

If the source function is white noise, then:

• Temporal component of the Green’s function yields 
random fractal noise

• Spatial component of Green’s function yields a random 
fractal surface (Mandelbrot surface) with a Fractal 
Dimension of 2.5 



Deconvolution 

• Problem: Find an estimate for
• Assumption: is Gaussian 

Strong scattering                   Strong scattering in a
in a random medium             tenuous random medium



A Bayesian Inverse Filter 
• A Gaussian noise assumption yields the

following a Posteriori (inverse) filter

where                defines the SNR 

• Adaptive filtering is used based on searching 
for a reconstruction with a maximum average 
gradient for minimum zero crossings



Example Results

Diffusion                       Fractional Diffusion



Light Management
Application of fractional diffusion imaging in 

Light Management Technology:
Quality control for mass production of diffusers

http://www.microsharp.co.uk

http://www.microsharp.co.uk


Manufacture of Microsharp
Light Diffusers based on q

• Light diffusion based model

• Fractional light diffusion based model

Diffusion and Fractional Diffusion based Models for Multiple Light Scattering and
Image Analysis, J M Blackledge, ISAST Trans. in Electronics and Signal Processing,
ISSN 1797-2329,  No. 1, Vol. 1, 38 - 60, 2007 



Summary
• The Diffusion Equation has been used to model 

strong scattering processes

• The inverse scattering problem reduces to: 
‘Deconvolution for a Gaussian PSF’

• We have modelled intermediate scattering using a 
Fractional Diffusion Equation and shown that, for 
a highly diffuse medium, the Optical Transfer 
Function is 



Open Problems
• What is the effect of including further terms in 

the fractional Green’s function?
i.e. can we produce an OTF that:
- does not rely on an asymptotic solution
- is of practical value (e.g. for deconvolution)

• Method applies to incoherent imaging only, i.e. a 
fractional diffusion equation for the intensity.

How can we use the same approach to model 
intermediate coherent scattering?



Diffusion MRI



Questions
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