WARSAW UNIVERSITY OF TECHNOLOGY -.r"",-h I
DEVELOPMENT PROGRAMME

Bankanmerina“? Bt e e

T ¥
Jan 11 Jan 23 Festy 00 Fet

Friday 5t March, 2010: 11:00-13:00

Financial Modelling using the
Fractal Market Hypothesis
< J M Blackledge

Stokes Professor S fl

science foundat ion in eland

Dublin Institute of Technology = fomuracteson
http://eleceng.dit.ie/blackledge

Distinguished Professor
Warsaw University of Technology

i HUMAN CAPITAL B o

NATIONAL COHESION STRATEGY SOCIAL FUND

Lectures co-financed by the European Union in scope of the European Social Fund


http://eleceng.dit.ie/blackledge

What is the Problem?

* Financial indices are digital signals
composed of tick data corresponding to
different measures of an economy over a
range of scales

 Is It possible to analyse these signals In
such a way that a prediction can be made
on their likely future behaviour or trend ?

- Time Series Forecasting
- Systemic Risk Assessment
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What is Capitalism?
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The Price
Of Greed

How Wall Street
took a mighty fall-
and brought markets
around the world
down with it

BY ANDY SERWER &
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The FMH operator:

Hypothesis: A change In q(t) precedes a
change In a financial signal
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Application of the Fractal Market Hypothesis for Modelling
Macroeconomic Time Series

Blackledge J M, ISAST Transactions on Electronics and
Signal Processing, No.1, Vol. 2, 89-110, 2008

ISSN:1797-2329 http://eleceng.dit.ie/papers/106.pdf

Systemic Risk Assessment using a Non-stationary
Fractional Dynamic Stochastic Model for the Analysis of
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2010 (Submitted) http://eleceng.dit.ie/papers/148.pdf
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Contents of Presentation |

Part I

 What are Fractals?

« Random Walks and Hurst Processes

« Random Walks and the Fractional Diffusion Equation
» Fractional Calculus

 Basic Model for a Stationary Process

« Levy statistics and the Fractional Diffusion Equation
e Questions

e Interval (10 Minutes)
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' Contents of Presentation Il

Part Il

* The Efficient Market Hypothesis

* Properties of Financial Signals

 The Fractal Market Hypothesis

* Numerical Algorithms

 Example Results

« Case Study: ABX index analysis for the Bank of England
« Summary and Research Project Proposals

e Questions
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@ Part 1: What are Fractals ?

“The term fractal is derived from the Latin adjective
fractus. The corresponding Latin verb frangere
means ‘to break’, to create irregular fragments.

In addition to ‘fragmaneted’ fractus should also
mean ‘irregular’, both meanings being preserved
iIn fragment”.
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Fundamental Definition )
of the Fractal Dimension 4

~ log(V)
log(r)

) =



Fractal Types

Fractal type Fractal Dimension
Fractal Dust 0<D<1
Fractal Curve 1< D<?2
Fractal Surface 2 < D <3
Fractal Volume 3<D<A4
Fractal Time 4 < D<h
Hyper-fractals D <D <6
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Fractals and Texture
ANPr|f(r)| = Prf(Ar

“Much of Fractal Geometry can be considered
to be an intrinsic study of texture” B Mandelbrot



UTE OF 5
\‘_\d“ T

Cs,
T

K
o ASNL - Dy, »
o a
o

7,
%,
”
Cliary - 20!

ey »
Negajoeht

Fractal Clouds: D=2.1




TE
VTUT ().',r',c
4

" Fractal Clouds: D=2.2
T




TUTE OF 5
LVTUTE OF f'(‘
4

¢ kS
Ny ,\|oc.\“r




TUTE OF 5
LVTUTE OF f'(‘
4

¢ kS
Ny ,\|oc.\“r



GTUTE OF 7
& 7
o foy




QTUTE OF 7
o o,

= -

- -:""-:l"--.. {#; ;
=




GTUTE OF 7
e\“R foy

=

-

#— -
T e e
e

-
ul



TUTE OF 5
LVTVT !0(‘
4

DITE

' ¥
Negyajoch™




GTUTE OF 7
& 7
o foy




A TUTEOF 7,
A ¢

L7 .
Ca ik
VEgLaoCt




Random Fractal Walks with a

Variable Hurst Exponent
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Random Walks and the
Fractional Diffusion Equation .

02 , 01
R(t) = at” — —
ox 0#1
Hurst exponent H: Fourier dimension:
O<H<1, D=2-H 0<g<2; D=(5-2q)/2 (0.5<g<1.5)

e g=1: Diffusion Equation
e =2: Wave Equation
e 1<g<2: Fractional (Fractal) Diffusion Equation

H>0.5 (g>1): random walk with persistence
and directional bias



Fractional Calculus

e L’hospital to Leibnitz (1695):
‘Given that d"f/dt" exists for all integer n,
what if n be 1/2'.

e Leibnitz to L’hospital:

‘It will lead to a paradox ... From this
paradox, one day useful consequences
will be drawn'.






Fundamental Property:
Statistical self-affinity

1 fAT)dT

! 1
F(t) = 1& 2 f(At) = w/ (t — )14




Fractional Integral Transforms

e Riemann-Liouville transform
'}
- L[ f(r)
I19f(t) = ' T, > ()
f() F(q) / (i _T)_l__qr*r, {

— fx,

e Erdelyi-Kober transform
(a generalised fractional integral)

{

S f—p—q+l +p—1 |
I7f(t) = X0 / =) f(r)dr, ¢ >0, p>0

0



Basic Model for a

Stationary Process

Let n(t) be a ‘white noise’ source and

02 01
(8:1:2 Jq%) u(x,t) = o(x)n(t)

0@

9 ) = = / U (. ) (iw)? expliwt)dw

— OO



o
() = o / N () expliwt)dw
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@ Power Spectrum Characteristics

log(Power Spectral Density Function)

= log(constant) + g log(frequency)



Fundamental Solution (@)
(Ignoring scaling constants) .
1

u(w, ) =n(t) © o——7 +ilx|n()
o0 ., qu/g
> e P ()
kzl (k+1)! dtka/2
u(t) = PrR—s 2 n(t) r — (0

Solution Is

A 2Prlu(\t)] = Prlu(t)] statistically
self-affine



Characteristic Noise

g-value | t-space w-space (PSDF) | Name
q=20 % X n(t) 1 White noise
q=1 7 R n(t) g Pink noise

t
q =2 [ n(t)dt w% Brown noise
q > 2 t(a/2) =1 & n(t) |w-1\q Black noise




Levy Statistics and the  {&)
Fractional Diffusion Equation ¢ .

Levy’s question:

Under what circumstances does the
distribution associated with a random
walk of a few steps look the same as
the distribution after many steps
(except for scaling)?

Under what circumstances do we
obtain a random walk that is
statistically self-affine?
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&9 Characteristic Function and the

Probability Density Function 16N
&

* Levy’s characteristic function:

P(k) =exp(—a | k
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Evolution Equation for a
Brownian Process

u(xe,t+7) =u(r,t) @ plx)

* Describes the concentration of particles that
move over a distance x with probability p(X).

 In Fourier space this equation is

Uk,t+71)=U(k,t)P(k)



Fractlonal Diffusion Equatlon
7 o

 Consider the characteristic function
Pk)~1—al k]|

e \We can then write
Uk, t+71)—U(k,t)

T

~ Lk UK )
.

0 O 7T —0
der w(x,t) = o

o=T/a



‘Em  Relationship between the Levy
2 Index and the Fourier Dimension

e Green’s function Is given by
9(1 @ |:0) = 5= exp(ist, | @ )
(), = i%(iwcr)%

* Implies the following relationship:



Summary

« Random walks with a directional bias are
Hurst process — fractional Brownian motion

e Hurst processes are a generalisation of
Brownian motion and classical diffusion

0 04
+1 — , g!
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@  Summary (continued)

 We have considered a model for a financial signa
compounded in the fractional PDE

(;; 3;) w(x,t) = o(x)n(t)

« The solution to this equation is, for @ — 0

u(t) =

PRy ® n(t)

which is a random fractal signal with property

A 2Pr{u(\t)] = Prlu(t)]



@ Inthe Following Lecture...

* We shall investigate the properties of
financial signals

e Consider a non-stationary model based on
the operator

2
4 54(t) .
0x? ota(t)

* Develop a moving window based algorithm
to compute g(t) for a financial signal



Questions
_|_

Interval (10 Minutes)



Part |l: Contents

The Efficient Market Hypothesis
Properties of Financial Signals
The Fractal Market Hypothesis
Numerical Algorithms

Example Results

Case Study: ABX indices

Questions
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@ The Efficient Market Hypothesis

The Theory of
Speculation

Louis Bachelier, PhD
Thesis, 1900

e Used Brownian motion to
evaluate stock options

e Basis for the EMF

Efficient Market Hypothesis
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U(x,t) - Call Premium
x - Stock Price

v - volatilty

r - risk

Assumes market is a
stationary Gaussian
process!

T — ()

Call Premium
b I @

Call Premium versus Security Price

25 20325 40 45 50 550
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Principal Differences

EMH

FMH

(Gaussian statistics
Stationary process

Economy has no memory
(no historical correlations)

No repeating patterns
at any scale

Continuously stable at all scales

Non-Gaussian statistics
Non-stationary process

Economy has memory
(hustorical correlations exist)

Many repeating patterns
at all scales, e.g. Elliot waves

Possible mstabilities at any scale,
e.g. ‘Levy Flights” and ‘Black Swans’




1 ] Is an Economy Based on
4 Moo \ ] ]
Stationary Gaussian Processes? (&)
&
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Does an Economy have I\/Iemory’>

Absolute Log price difference

Autocorrelation function




Memory and Fractional
Differentiation

 Differentiation of a function is a localised operation;
It ‘measures’ the gradient of a function at a point
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« Fractional differentiation depends on the history of
the function — its memory

) mo _
D?f(t) = t;fm I ()], m—q>0

P _ -
IPf(t) = f(t) ® T P 0

I'(p)



Does an Economy Have
Repeating Patterns? (Elliot Waves) .
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Is an Economy Continuously
Stable at aII Scales’?
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Does the FMH work?

FMH Simulation

2 q(t)
83 __ ga gtqu) Pr{q(t)] =Gavss(x)
b

Dow Jones Reality

EMH
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“Non-stationary Signal Processing “=«

Te,
A
1o,

2 2
8 o'q(t) 6(]( )
83;2 8tg(t)

 Requires application of ‘moving windows’ to
compute q(t):
Time-frequency methods in DSP

 Hypothesis:

A change in g(t) precedes a change in a
macroeconomic index (e.g. FTSE)



Com pu tin gd (t)

* Applying a moving window to the signal
(user defined)

* For each window, assume a stationary
process where the signal Is given by

1
u(t) = ER—y5 2n(t), q>0
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@  Data Fitting Methods

07* 'f
N
=

e Least Squares Method: Minimise

e(q,C) = | InP(w) — In P(w,q.O)|f3

* Orthogonal Linear Regression (OLR)

 Note: DC level Is omitted from input as it
measures the scale of the signal and not
its fractal dimension



Principal Algorithm

Step 1: Read data (financial time series) from file into
operating array ali|.i =1,2,...,N.

Step 2: Set length L < N of moving window w to be
used.

Step 3: For j = 1 assign L + j — 1 elements of afi| to
array w(i|,i =1,2,..., L.

Step 4: Compute the power spectrum P|i] of wi] using
a Discrete Fourier Transform (DFT).




Principal Algorithm (continued)

Step 5: Compute the logarithm of the spectrum exclud-
ing the DC, i.e. compute log( Pi])¥i € |2, L/2].

Step 6: Compute ¢[j| using the OLR algorithm.

Step 7: For ;7 = 5 + 1 repeat Step 3 - Step 5 stopping
when j =N — L.

Step 8: Write the signal ¢|j] to file for further analysis
and post processing.
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FMH Wavelet

Fr(t) =wr(t) @ f(t), L>0
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Dow Jones Close-of-Day data from 02-11-1932 to 25-03-20009.

Dow Jones data (blue — after normalization) and q(t) (red)
computed using a window of size 1024.
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FTSE Close-of-Day data from
| 25-04-1988 to 20-03-20009.
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Statistical Properties of g(t)

Statistical Parameter q(t)-F'TSE | ¢(t)-D.J
Minimum Value 0.9876 0.9752
Maximum value 1.5067 1.5154
Range 0.5190 0.5402
Mean 1.2482 1.2218
Median 1.2639 1.2452
Standard Deviation 0.1017 0.1269
Variance 0.0104 0.0161
Skew -0.4080 -0.2881
Kertosis 2.3745 1.8233
Composite NormalityN | Reject Reject
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@  Post-processing: Filtering q(t)

* By low pass filtering q(t) macrotrends can be
detected.

« Imperative that a filter is used that:
- guarantees smoothness
- shape preserving
- locally data consistent

* Requires application of a
Variation Diminishing Smoothing Kernel (VDSK)



Gaussian VDSK

e Gaussian low-pass filter given by

exp(—fuw?)

b determines the detail observed in q(t)

 Filtering must be based on end-point-
extension method in order to preserve
consistency of the filtered data, I.e.

eliminate wrapping



Example: FTSE (Close-of-Day)
19 March 2004 — 26 November 2008 %

| | | | | | | | ‘il
q(t) ,
i i i FTSE (Normalised):
0 100 200 300 400 500 BOO 70O 8OO 800 1000
' ' ' Minion 10 May ‘07 '
_Macrotrends S suntil DU N N 1
i i i Max on 19:June ‘07 i

I 100 200 300 400 S00 BO0 F S0 q00 1000

| | | | | | I h |

Normalised !
Gradilents' i
0 100 200 =200 400 2 sS00 GO0 700 800 900 1000




Case Study:
ABX Index Analysis

19/01/2006
19/05/2006 -
19/09/2006 -
19/01/2007 -
19/05/2007 -
19/09/2007 -
19/01/2008 -
19/05/2008
19/09/2008
19/01/2009

Grades for the ABX Indices from 19 January 2006
to 2 April 2009 based on Close-of-Day prices.



f:,:i What is an ABX Index ?

 The index is based on a basket of Credit Default Swap
(CDS) contracts for the sub-prime housing equity sector.

o Credit Default Swaps operate as a type of insurance policy
for banks or other holders of bad mortgages.

 If the mortgage goes bad, then the seller of the CDS must
pay the bank for the lost mortgage payments.

o Alternatively, if the mortgage stays good then the seller
makes a lot of money.

* The riskier the bundle of mortgages the lower the rating.
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Statistical Characteristics

of q(t) for ABX Indices

Statistical | AAA AA A BBB
Parameter

Min. 1.1834 | 1.0752 | 1.0522 | 1.0610 | 1.0646
Max. 3.1637 | 2.8250 | 2.7941 | 2.4476 | 2.5371
Range 1.9803 | 1.7499 | 1.7420 | 1.3867 | 1.4726
Mean 2.0113 | 1.7869 | 1.6663 | 1.5141 | 1.4722
Median 1.9254 | 1.7001 | 1.4923 | 1.3425 | 1.3243
SD 0.3928 | 0.4244 | 0.4384 | 0.3746 | 0.3476
Variance 0.1543 | 0.1801 | 0.1922 | 0.1404 | 0.1208
Skew 0.7173 | 0.3397 | 0.6614 | 0.8359 | 1.0345
Kertosis 2.7117 | 1.8479 | 2.0809 | 2.2480 | 2.7467
CN Reject | Reject | Reject | Reject | Reject




Open ...
|d°se wata File ‘C:‘Documents and SettingsiAdministratorn\DesktoptDOWWADIOWY 1 b I Browse...
Financial Time Series Moving Window Size 1024 _ Standard Deviation 100 Compute
15000
10000
5000
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Yolatility Index (Green) 4
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http://eleceng.dit.ie/arg/downloads/FMH.zip

What Went Wrong?
The Human Factor

“I am In blood,

stepp’d in so far that,

should | wade no more,

returning were as tedious as go o’er.”

Replace the word ‘blood’ for ‘debt’ and the
trend was set irrespective of the Hypothesis



Summary

« Market dynamics are fractional dynamics

e Many economic signals are non-stationary random
scaling fractals

9
O e H4(t)
Ox? ota(t)

« FMH operator:

« FMH Hypothesis:

A change in g(t) precedes a change in a
macroeconomic index



Summary (Continued)

* q(t) Is computed using the OLR method
and a moving window

o ((t) Is filtered using a Gaussian VDSK to
reveal macrotrends

e ((t) provides a measure of
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Open Problems

 What is the best way to interpret q(t), i.e. how
should q(t) be post-processed to best ‘reflect’ the FMH:
- statistical interpretation of Pr[q(t)] ?
- Bayesian analysis?

 What other fractal measures could be used ?

 What is the effect of considering a multi-dimensional
model with FMH operator:
Ha(t)

2 q(t)
\ v Ota(t)




Research Project Proposal 1.
Multi-Fractal Analysis

Fuzzy logic Decision

j> DSP :> j>

Feature

1 vector
S
Knowledge
Data Base

Feature vector to include multi-fractal parameters g=1,2,...

In (Zpi?)
D, = : @' pr = Ni/N

I
(g —1) 50 Ino

Economic signal

http://www.tradingsolutions.com
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Wednesday 10™ March, 2008, 10:00 - 13:00

Institute of Heat Engineering,
Faculty of the Power and Aeronautical Engineering,
21/25 Nowowiejska St. Room TC 105 (first floor).
http://itc.itc.pw.edu.pl/index an.html




