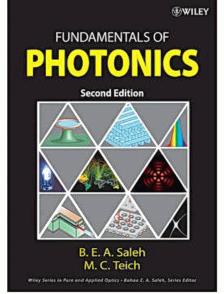


Quantum Electronics Lecture 2



Waveguide optics & Devices

Lecturer:

Bozena Jaskorzynska

Royal Institute of Technology (KTH) Sweden, <u>bj@kth.se</u>

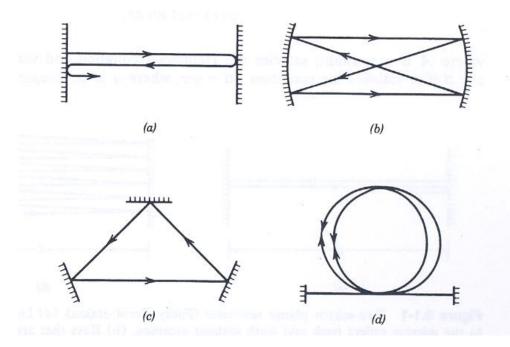
Lectures co-financed by the European Union in scope of the European Social Fund

Contents

- Guiding in slab waveguides
- Effective Index Method
- Coupled Mode Theory
- Mode interference
- Examples of device concepts

What is an optical resonator ?

Optical resonator is a trap for light !!



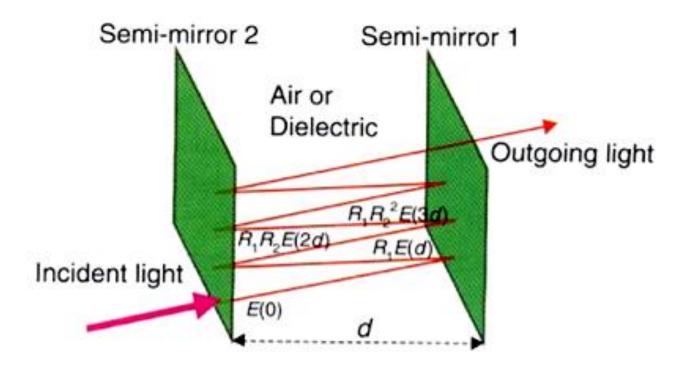
Confines and stores light at certain resonance frequencies

Light circulates or is repeatedly reflected

High frequency selectivity

Applications: "Container" for laser light Optical filter or spectrum analyzer

Principle for Fabry Perot resonator



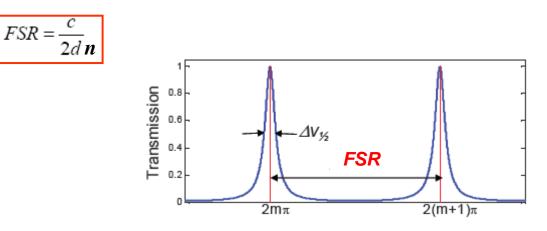
The outgoing λs for which $d = m \lambda/2$, add up in phase (resonant λs)

Condition for standing wave in a resonator

Fabry-Perot resonator

$$E_{0} \propto e^{inkz} \quad E_{1} \propto e^{i(nkz+nk2d)}$$
Phase shift per round trip (ignoring phase shifts on reflection)
 $2\theta = 2kdn$ Resonans condition
If this is $m2\pi$, then the E_{i} 's add
coherently, i.e. we are on resonance
(*m* is an integer)

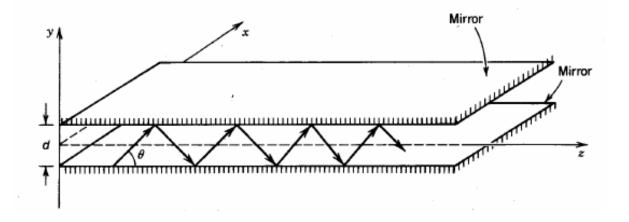
Spacing of resonances is called the Free Spectral Range (FSR)



 M_2

Planar-mirror ("closed") waveguides

Let us use this simplest case to explain basic concepts for waveguiding



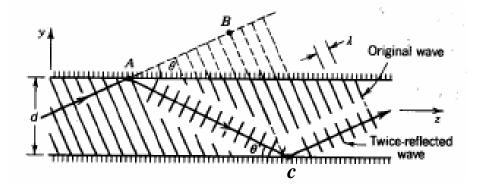
Imagine a monochromatic plane wave bouncing between two parallel, perfectly reflecting metal mirrors The field is captured and in such a way can be guided

It CAN but IS it ??

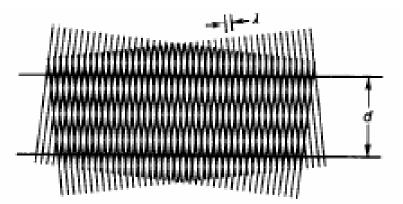
Fundamentals of Photonics - Saleh and Teich

Self-consistency creates modes

Guidance can only occur at angles at which self-consistency (transverse resonance) condition is satisfied: as a wave reflects twice it duplicates itself

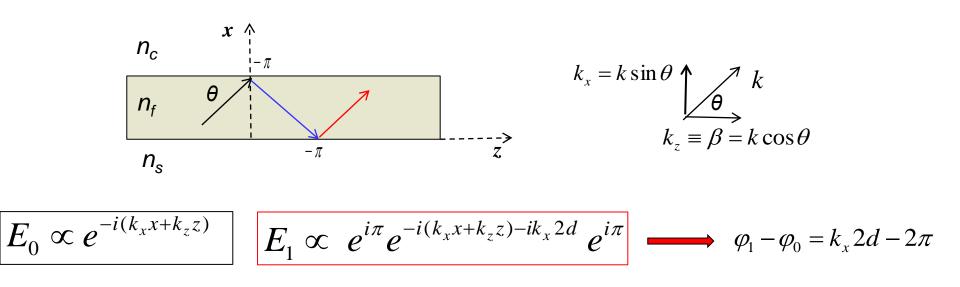


At those angles the two waves interfere to create a pattern that dose not change with Z (forming a transverse field distribution, "profile", of a guided mode)



Fundamentals of Photonics - Saleh and Teich

Self-consistency condition



Transverse resonance condition:

 $2kd\sin\theta_m - 2\pi = m \cdot 2\pi$ m = 0, 1, 2, ... Mode order limited by: $\sin\Theta_m \le 1$

$$\beta_m^2 = k^2 - \frac{m^2 \pi^2}{d^2} \implies \beta_m^2 = \frac{n^2 \omega^2}{c^2} - \frac{m^2 \pi^2}{d^2}$$
 Dispersion relation

Modal fields in a planar-mirror waveguide



Found from Helmholtz equation + boundary conditions at the walls (Boundary-Value problem)

At the walls tangential components of E and H must be continuous (For metal mirrors E at the walls = 0)

$$E_{x}(y, z) = a_{m}u_{m}(y) \exp(-j\beta_{m}z),$$

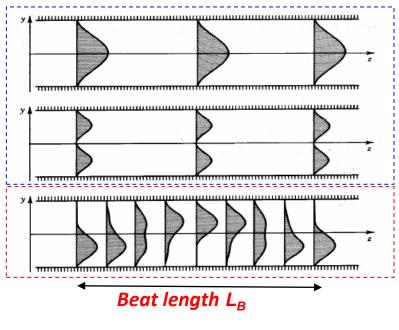
$$u_{m}(y) = \begin{cases} \sqrt{\frac{2}{d}} \cos \frac{m\pi y}{d}, & m = 1, 3, 5, ... \\ \sqrt{\frac{2}{d}} \sin \frac{m\pi y}{d}, & m = 2, 4, 6, ..., \end{cases}$$

Orthogonality: $\int_{-d/2}^{d/2} u_{m}(y)u_{l}(y) dy = 0, \quad l \neq m,$
Normalization: $\int_{-d/2}^{d/2} u_{m}^{2}(y) dy = 1$

Orthogonality – each mode carries its own power and does not interact with the others

Fundamentals of Photonics - Saleh and Teich

Single-mode and "mixed" propagation



 $I \propto |E|^{2} = |u_{1}|^{2} + |u_{2}|^{2} + [u_{1}u_{2}^{*}e^{-i(\beta_{1}-\beta_{2})z} + cc]$ = $I_{2} + I_{2} + 2u_{1}u_{2}\cos(\beta_{1}-\beta_{2})z$ (for real u)

Intensity for single mode propagation **does not vary** with distance z

Intensity for several modes propagating together **varies** with *z*, since they interfere with the **relative phase** which **varies** along *z*.

$$E(y,z) = u_1(y)e^{-i\beta_1 z} + u_2(y)e^{-i\beta_2 z}$$

$$L_B = \frac{2\pi}{\beta_1 - \beta_2}$$

But there is NO power power exchange between the modes:

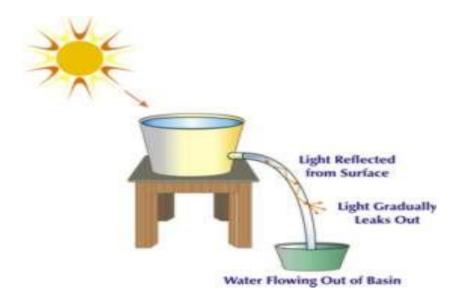
$$P \propto \int |E|^2 dy = \int |u_1|^2 dy + \int |u_2|^2 dy + \left[e^{-i(\beta_1 - \beta_2)z} \int u_1 u_2^* dy + cc \right] = P_1 + P_2$$

=0 due to orthogonality

Dielectric ("open") waveguides

Light guiding by total internal reflection (TIR)

Discovered by Daniel Colladon in 1841 in water jet



Total internal reflection

For TE wave:
$$r_{TE} = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$$
 $t_{TE} = 1 + r_{TE}$
For TM wave: $r_{TM} = \frac{n_2 \cos \theta_1 - n_1 \cos \theta_2}{n_2 \cos \theta_1 + n_1 \cos \theta_2}$ $t_{TM} = \frac{n_1}{n_2} (1 + r_{TM})$
 $r_{TE} = |r_{TE}| \exp(j\phi_{TE}), r_{TM} = |r_{TM}| \exp(j\phi_{TM})$
At optical wavelengths one uses dielectric (open)
waveguides where the light is confined due to

the total internal reflection: $n_1 \cdot \sin \theta_1 \ge n_2$

$$\implies$$
 $r_{TE} = \exp(j\phi_{TE}), r_{TM} = \exp(j\phi_{TM})$

Phase shift at the total internal reflection

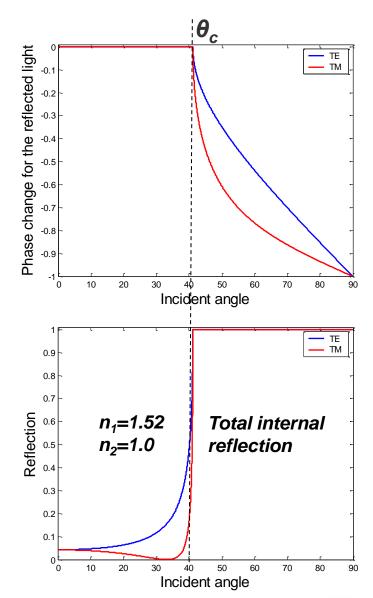
Phase shift depends on the incidence angle θ_1

$$\tan\frac{\phi_{TE}}{2} = \frac{\sqrt{\sin^2 \theta_1 - \sin^2 \theta_c}}{\cos \theta_1} = \frac{\sqrt{n_1^2 \sin^2 \theta_1 - n_2^2}}{n_1 \cos \theta_1}$$

$$\tan\frac{\phi_{TM}}{2} = \frac{\sqrt{\sin^2\theta_1 - \sin^2\theta_c}}{\cos\theta_1\sin^2\theta_c} = \frac{n_1^2}{n_2^2}\frac{\sqrt{n_1^2\sin^2\theta_1 - n_2^2}}{n_1\cos\theta_1}$$

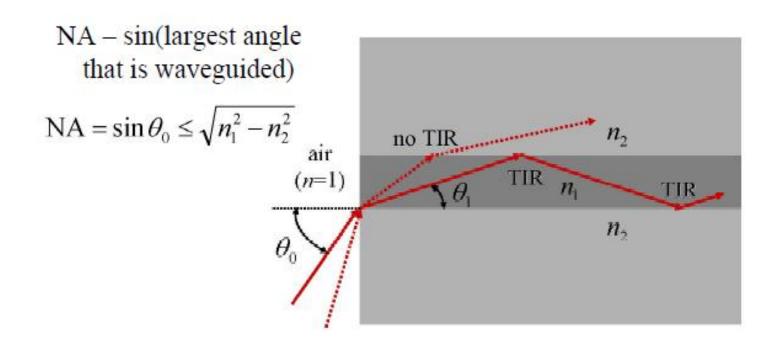
$$\theta_c$$
 - critical angle $\sin \theta_c = \frac{n_2}{n_1}$

The phase shift for Φ drops from 0 to $-\pi$



Quantum Electronics, Warsaw 2010

Numerical aperture NA



high index contrast $(n1/n2) \longrightarrow$ high NA

Important for light incoupling to a waveguide !!

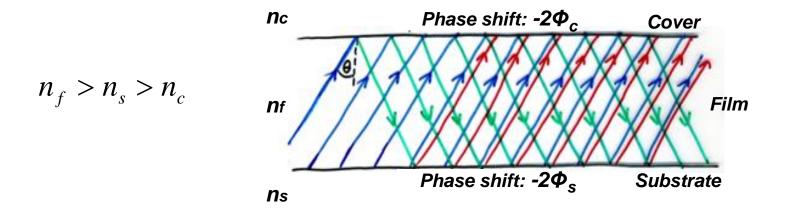
Transverse resonance (consistency) condition

Light will not escape from a slab (film) when:

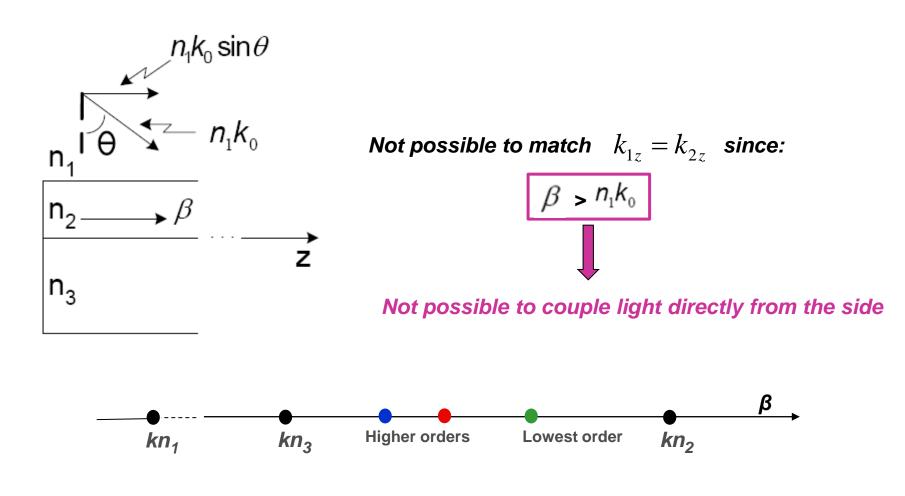
$$n_c < N < n_f$$
 where: $N = \frac{\beta}{k} = n_f \sin \theta$ \leftarrow Effective index

But this is not sufficient for light guidance !

In addition the transverse resonance (self-consistency) condition must be satisfied the incident and the doubly reflected wave must be in phase:

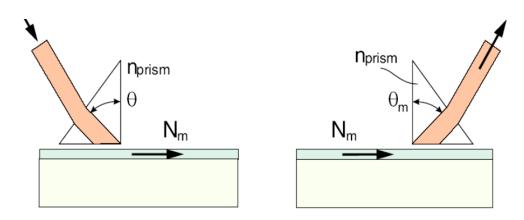


Side coupling to a waveguide



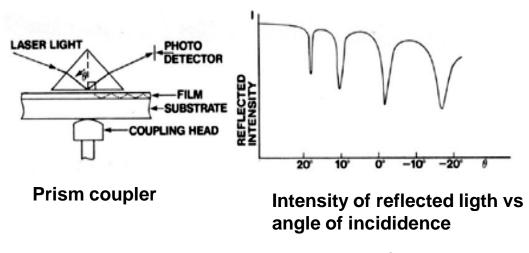
Possible with a prism of refractive index $\geq n_2$

Prism coupling

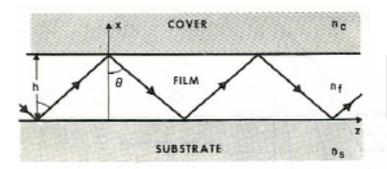


Coupling to mode **m** if: $n_{prism}k_0\sin(\theta) = \beta_m = n_2k_0\sin(\theta_m) = k_0N_m$

Experimental determination of mode propagation constants $\beta_m = n_2 k_0 \sin(\theta_m)$



Dispersion relation



Phase shift for TE (i = s or c):

$$\phi_l = 2 \tan^{-1} \left(\frac{n_f^2 \sin^2 \theta - n_l^2}{n_f^2 \cos^2 \theta} \right)^{1/2} = 2 \tan^{-1} \left(\frac{N^2 - n_l^2}{n_f^2 - N^2} \right)^{1/2}$$

Transverse resonance condition:

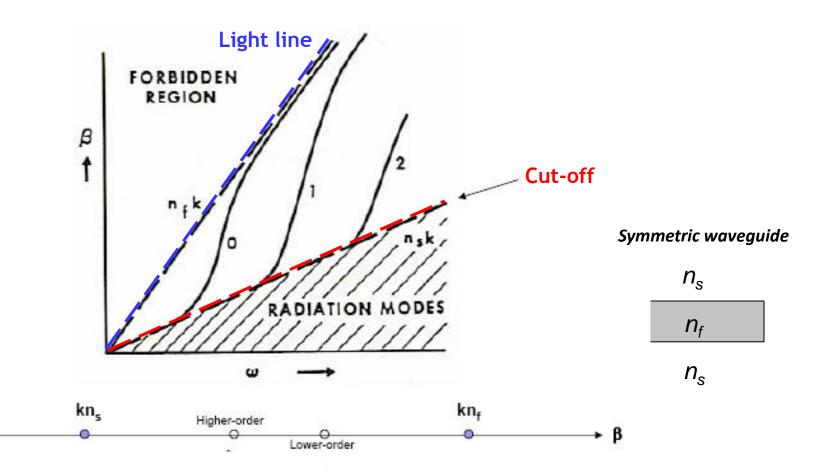
 $\begin{array}{ll} 2kn_fh\cos\theta - 2\phi_c - 2\phi_s = 2m\pi & m : \text{mode number} \\ kn_fh\cos\theta & : \text{phase shift for the transverse passage through the film} \\ 2\phi_c(=\phi_{TE,TM}) & : \text{phase shift due to total internal reflection from film/cover interface} \\ 2\phi_s(=\phi_{TE,TM}) & : \text{phase shift due to total internal reflection from film/substrate interface} \\ \end{array}$

Dispersion equation (β vs. ω):

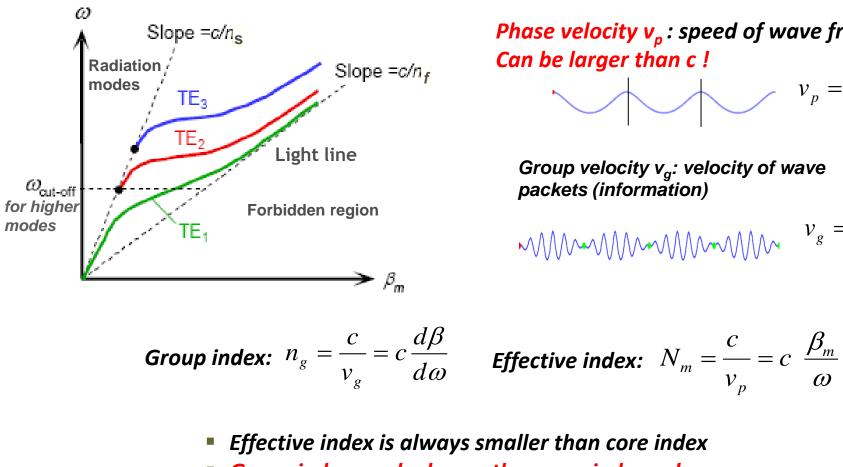
$$kn_f h \cos \theta - \phi_c - \phi_s = m\pi$$

Effective index $N \equiv \frac{\beta}{k} = n_f \sin \theta$ $n_s < N < n_f$ For guided modes

Typical dispersion diagram

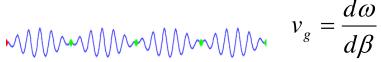


Group and effective indices in waveguides



Phase velocity v_p : speed of wave fronts Can be larger than c ! $v_p = \frac{\omega}{\beta}$

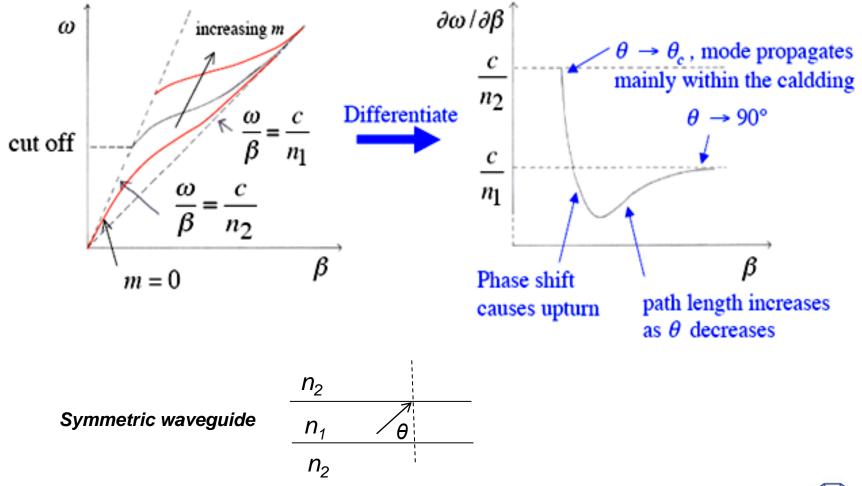
Group velocity v_a: velocity of wave packets (information)



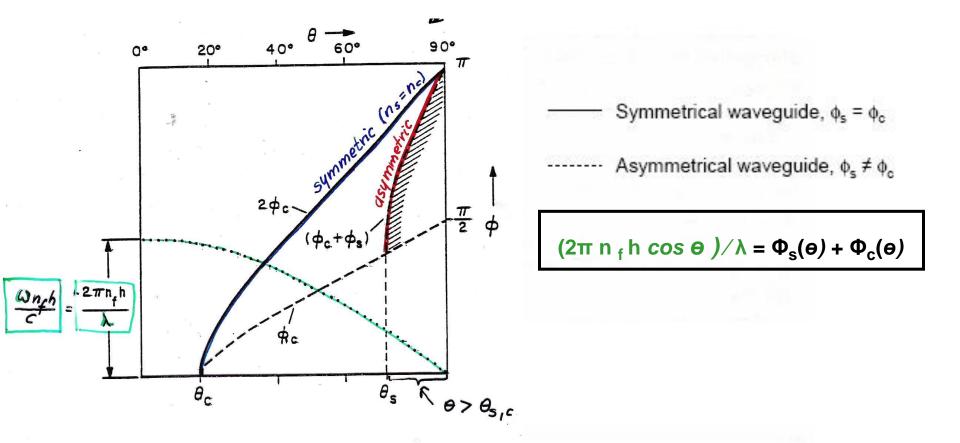
Effective index is always smaller than core index

Group index can be larger than core index n_f ! **Higher orders** Lowest order kn_s kn_f

Group velocity for guided modes



Graphical solution of the dispersion equation

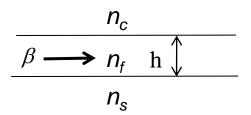


For fundamental mode (m = 0), there is always a solution (no cut-off) for symmetrical waveguide. Increasing h (and/or decreasing λ) will support more modes.

Normalized units for slab waveguides

Normalized frequency and film thickness

$$V \equiv kh\sqrt{n_f^2 - n_s^2}$$



Normalized guide index

$$b \equiv \frac{N^2 - n_s^2}{n_f^2 - n_s^2} \qquad N \equiv \beta / k$$

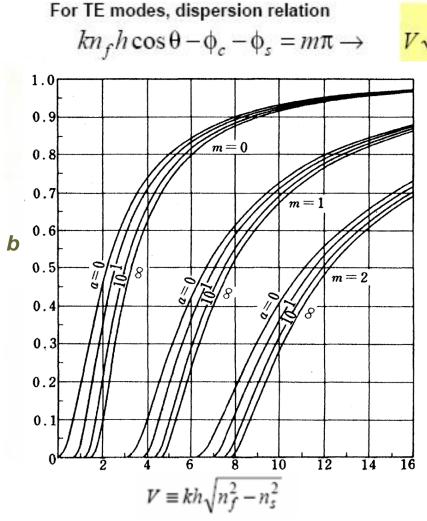
b = 0 at cut –off (N = n_s), and approaches 1 as N → n_f.

Measure for the asymmetry

$$a \equiv \frac{n_s^2 - n_c^2}{n_f^2 - n_s^2}$$
 for TE, $a \equiv \frac{n_f^4}{n_c^4} \frac{n_s^2 - n_c^2}{n_f^2 - n_s^2}$ for TM

Waveguide	$n_{\rm es}$	nr	nc	ag	aM
GaAlAs, double	3.55	3.6	3.55	0	0
heterostructure					
Sputtered glass	1.515	1.62	1	3.9	27.1
Ti-diffused LiNbO3	2.214	2.234	1	43.9	1093
Outdiffused LiNbO3	2.214	2.215	1	881	21206

Normalized dispersion diagram

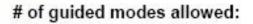


$$V\sqrt{1-b} = m\pi + \tan^{-1}\sqrt{\frac{b}{1-b}} + \tan^{-1}\sqrt{\frac{b+a}{1-b}}$$

m : Mode number

(Normalized) cut-off frequency:

 $V_0 = \tan^{-1} \sqrt{a}$ (for fundamental mode) $V_m = V_0 + m\pi$



 $m = \frac{2h}{\lambda} \sqrt{n_f^2 - n_s^2}$

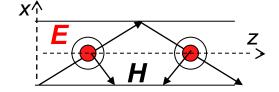
From the normalized dispersion diagram one can find modal propagation constants.

To find modal field distributions (profiles) one has to solve Helmholtz equations with appropriate boundary conditions.

Modal profiles

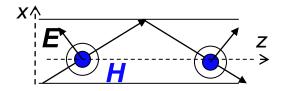
To find modal field distributions (profiles) one has to solve Helmhotz equations - in general, coupled (vectorial problem)!

For a slab waveguide they decouple into two scalar problems for TE and TM polarizations



TE: Hy = Ex = Ez = 0, other components expressed by one scalar, e.g. **Ey**

 $H_{x} = \frac{i}{\omega \mu} \frac{\partial E_{y}}{\partial z}, H_{z} = -\frac{i}{\omega \mu} \frac{\partial E_{y}}{\partial x}$



TM: Ey = Hx = Hz = 0, other components expressed by one scalar, e.g. Hy

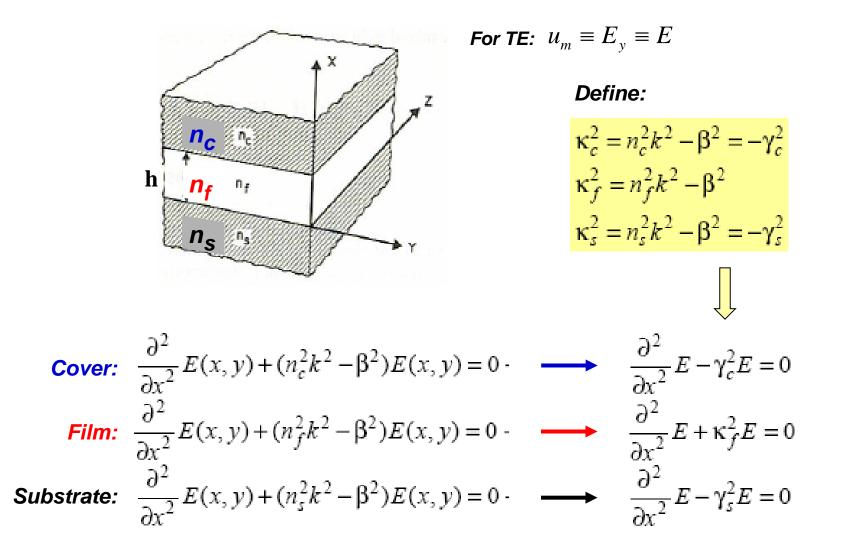
 $E_x = \frac{i}{\omega\mu} \frac{\partial H_y}{\partial z}, E_z = -\frac{i}{\omega\mu} \frac{\partial H_y}{\partial x}$

$$\frac{\partial^2 \Psi}{\partial z^2} + \frac{\partial^2 \Psi}{\partial x^2} + k_0^2 n^2(x) \Psi = 0 \qquad \Psi = \begin{cases} Ey & \text{TE} \\ Hy & \text{for} \end{cases}$$

Look for modal solutions: $\Psi_m(x, z, t) = u_m(x)e^{-i\beta_m z + i\omega t}$

$$\left[\frac{d^2}{dx^2} + (k^2 - \beta_m^2)\right]u_m(x) = 0$$
Quantum Electronics, Warsaw 2010

Helmholtz equations for modes



Modal field form

Modal solutions are sinusoidal or exponential, depending on the sign of $(k^2 n_i^2 - \beta^2)$

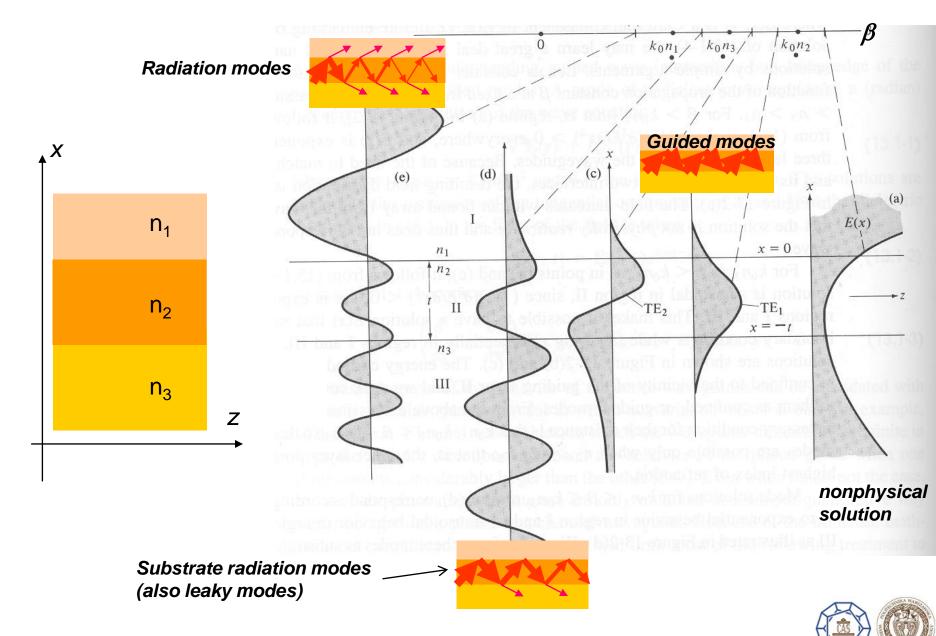
Boundary conditions: The tangential components of E and H are continuous at the interface between layers. $\rightarrow E_v$ and $\partial E_v / \partial x$ continuous at the interface.

For guided modes:

Cover:
$$\frac{\partial^2}{\partial x^2} E_y - \gamma_c^2 E_y = 0$$
 \longrightarrow $E_y = E_c \exp[-\gamma_c (x - h)]$
Film: $\frac{\partial^2}{\partial x^2} E_y + \kappa_f^2 E_y = 0$ \longrightarrow $E_y = E_f \cos(\kappa_f x - \phi_s)$
Substrate: $\frac{\partial^2}{\partial x^2} E_y - \gamma_s^2 E_y = 0$ \longrightarrow $E_y = E_c \exp(\gamma_s x)$
Evanescent field

For solutions satisfying the bondary condition see e.g. Yariv Chapt. 3.1

Types of modes



Waveguide mode general properties

Modes are ORTOGONAL

$$\int_{-\infty}^{+\infty} E_y^{(l)} E_y^{(m)} dx = \frac{2\omega\mu}{\beta_m} \delta_{l,m}$$

Each of them carries its own power and does not interact with the others

Set of all modes (including radiation and evanescent ones) is COMPLETE

Any field can be expressed as their superposition

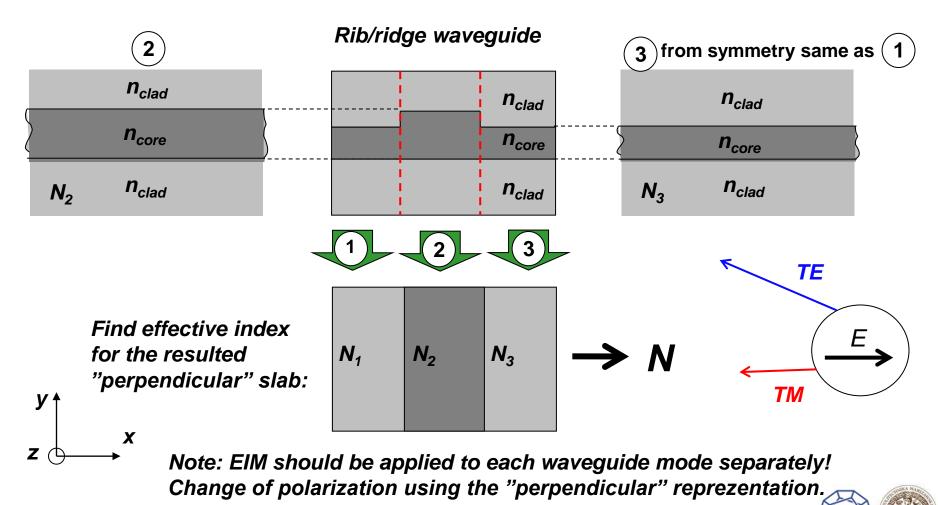
Any longitudinally uniform structure has its eigen modes – no matter what is the cross-sectional shape

Coupling between modes is only possible when guided structure has a perturbation along mode propagation direction

Effective index method (EIM)

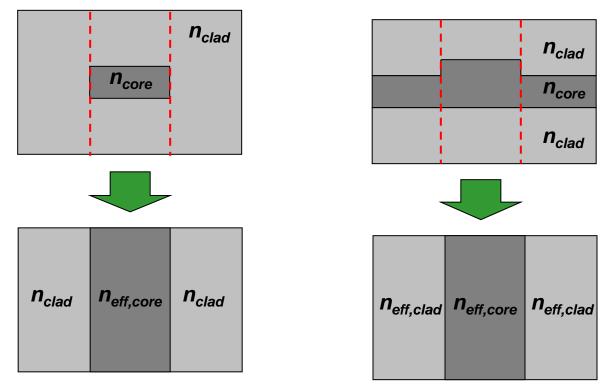
Replace each of the rib three sections with a slab of the corresponding thickness. Find effective indices for the slabs (1D problem, tabularized).

Replace the vertical (y) index profile in each section with the respective effective index.

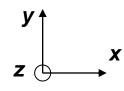


Effective index method

Channel waveguide

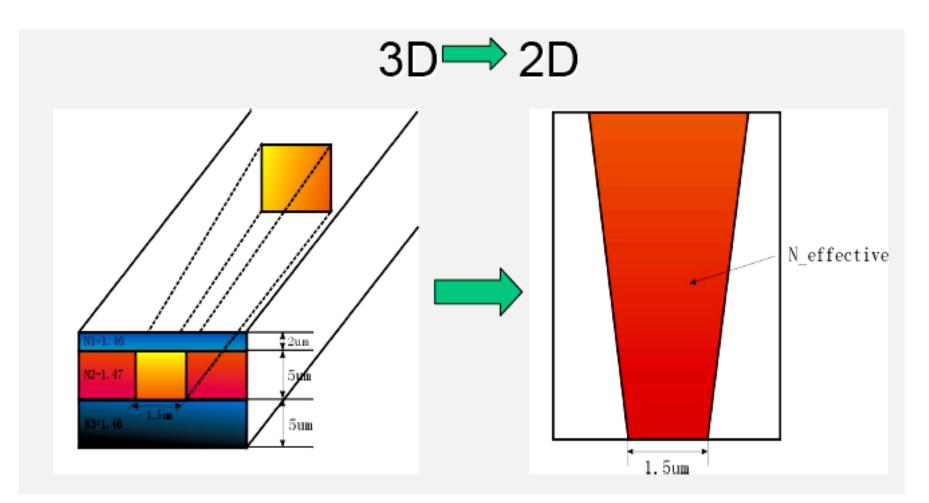


Rib/ridge waveguide



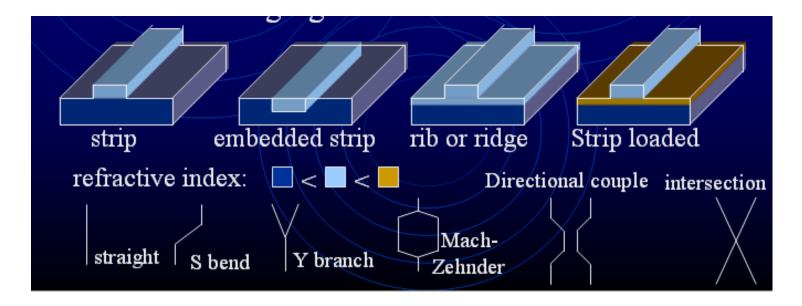
EIM mode solver - ridge waveguide: <u>http://wwwhome.math.utwente.nl/~hammerm/eims.html</u> <u>http://wwwhome.math.utwente.nl/~hammer/eimsinout.html</u>

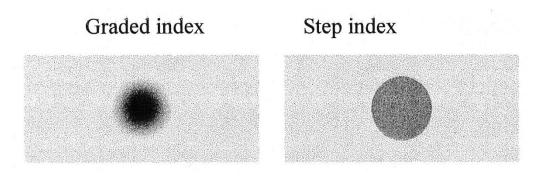
Effective Index Method



Reduces 3D problem to 2D one - Greatly improves computation efficiency

Geometries of channel waveguides





Coupled Mode Theory (CMT)

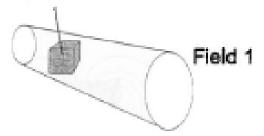
CTM is exact!

No para-axial approximation is needed to derive coupled wave equations

How we then approximate those equations depends on the physical problem

Lorentz Reciprocity Theorem

Source that generates Field 1



From Maxwell's equations, one can show that

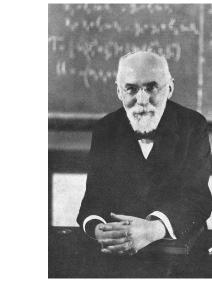
$$\nabla \cdot (\mathbf{E}_1 \times \mathbf{H}_2^* + \mathbf{E}_2^* \times \mathbf{H}_1) = -j\omega \mathbf{P}_1 \cdot \mathbf{E}_2^*$$

 P_1 is the polarisation of the source that generates E_1 and E_2 is an arbitrary field.

By integrating this relation, one can show that

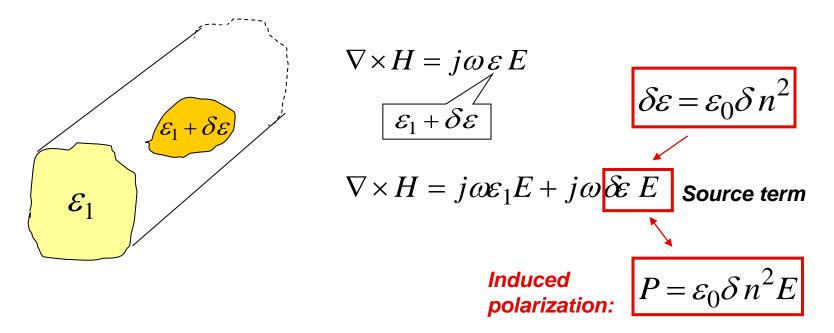
$$\iint d\mathbf{x} d\mathbf{y} \frac{\partial}{\partial \mathbf{x}} (\mathbf{E}_1 \times \mathbf{H}_2^* + \mathbf{E}_2^* \times \mathbf{H}_1)_r = -j\omega \iint d\mathbf{x} d\mathbf{y} \mathbf{P}_1 \cdot \mathbf{E}_2^*$$

Basis for Coupled Mode Theory



Hendrik Antoon Lorentz (1853 – 1928)

Polarization induced by perturbation of refractive index



Perturbation polarization can, for example, be induced by:

- Waveguide defects
- Introduced deformations, e.g. periodic ones
- ullet External electric DC field, e.g. by electro-optic effect: $\delta\!n \propto rE$
- Strong electromagnetic field, e.g. by optical Kerr effect: $\delta_n \propto n_2 |E|^2$

Coupled mode equations (exact)

From the reciprocity theorem one can derive coupled equations for evolution of modal amplitudes due to refractive index perturbation

One assumes E_1 be a superposition of all modes and E_2 be a mode " μ " of unperturbed waveguide

Substituting E_1 and E_2 to the integral form of reciprocity theorem and making use of mode orthogonality yields:

Forward propagating mode

Backward Propagating mode

 $A^{+}_{\nu}(z)$

$$\frac{d}{dz}A_{\mu}^{+}(z) = -\frac{j\omega}{4}\exp(j\beta_{\mu}z)\iint dxdy \ P E_{\mu}^{*}$$
$$\frac{d}{dz}A_{\mu}^{-}(z) = \frac{j\omega}{4}\exp(-j\beta_{\mu}z)\iint dxdy \ P E_{-\mu}^{*}$$

$$P = \varepsilon_0 \delta n^2 \sum_{\nu} A_{\nu}^+(z) E_{\nu} \exp(-j\beta_{\nu} z) + A_{\nu}^-(z) E_{-\nu} \exp(j\beta_{\nu} z)$$

Modal amplitudes slowly varying due to coupling

Approximation - phase matched mode coupling

$$P = \varepsilon_0 \delta n^2 \sum_{\nu} A_{\nu}^+(z) E_{\nu} \exp(-j\beta_{\nu} z) + A_{\nu}^-(z) E_{-\nu} \exp(j\beta_{\nu} z)$$

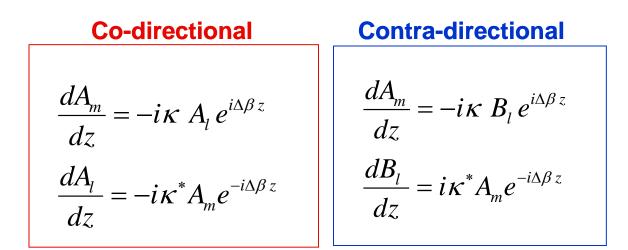
$$\frac{d}{dz}A_{\mu}(z) = -\frac{j\omega\varepsilon_{0}}{4}\frac{\beta_{\mu}}{|\beta_{\mu}|}\exp(j\beta_{\mu}z)\iint \delta n^{2}E_{\mu}^{*}\sum_{v}A_{v}(z)\exp(-j\beta_{v}z)E_{v}$$
Note phase factors !

Non negligible contribution from the RHS only if oscillations of the total phase factor ≈ 0

Only those modes can efficiently couple for which the phase mismatch is compensated by the perturbation

From phase matching condition usually most of the modes can be eliminated

Coupling between two modes

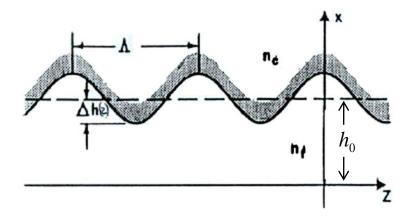


Coupling coefficient: $\kappa = \frac{\omega \varepsilon_0}{4} \iint E_m^* \delta n^2 E_l dx dy$ *Phase mismatch:*

$$\Delta \beta = \beta_m - \beta_l \qquad \Delta \beta = \beta_m + \beta_l$$

Two phase mismatched modes can be coupled when z-variation of Δn^2 compensates the mismatch.

Example: Mode coupling in periodic waveguide



Corrugated waveguide:

$$h(z) = h_0 + \Delta h \cos(\frac{2\pi}{\Lambda}z)$$

Regard this as distortion of waveguide of thickness h_o

$$\delta \varepsilon = \begin{cases} \varepsilon_0 (n_f^2 - n_c^2) & \text{for } h(z) > h_0 \\ -\varepsilon_0 (n_f^2 - n_c^2) & \text{for } h(z) < h_0 \end{cases}$$

Chose the modulation period so that it at some frequency matches the forward and backward modes of the same order (mode order skipped)

Periodic groves - Coupling coefficient

Evaluate the coupling coefficient : $\hat{\kappa}(z) = \frac{\omega}{4} \int E_m^* \delta \varepsilon(z) E_l dx$

Coupling between forward and backward modes of the same order: $E_m = E_l \equiv E$

$$\hat{\kappa} = \frac{\omega}{4} \int |E|^2 \delta \varepsilon \, dx \cong \frac{\omega}{4} |E(x=h_0)|^2 \delta \varepsilon \cdot 2 \int_{0}^{\Delta h \cos \frac{2\pi}{\Lambda} z} dx = \frac{\omega}{2} |E_h|^2 \delta \varepsilon \, \Delta h \cos \frac{2\pi}{\Lambda} z =$$
$$= \frac{\omega}{4} |E_h|^2 \delta \varepsilon \, (e^{i\frac{2\pi}{\Lambda} z} + e^{-i\frac{2\pi}{\Lambda} z}) = \kappa (e^{i\frac{2\pi}{\Lambda} z} + e^{-i\frac{2\pi}{\Lambda} z})$$

$$\kappa \equiv \frac{\omega}{4} |E_h|^2 \delta \varepsilon = \frac{\omega \varepsilon_0}{4} |E_h|^2 \delta n^2 = \frac{\omega \varepsilon_0}{4} |E_h|^2 2n \delta n = \frac{\omega \varepsilon_0 n}{2} |E_h|^2 \delta n$$

Forward to backward wave coupling

Chose the modulation period so that it at some frequency matches the forward and backward mode of the same order:

$$\frac{dA^{+}}{dz} = -i\kappa A^{-} \left[e \left[i \frac{2\pi}{\lambda} z \right] + e \left(-i \frac{2\pi}{\lambda} z \right) \right] e^{i(\beta_{-} + \beta_{+})z}$$
$$\frac{dA^{-}}{dz} = i\kappa A^{+} \left[e \left(i \frac{2\pi}{\Lambda} z \right) + e \left(-i \frac{2\pi}{\lambda} z \right) \right] e^{-i(\beta_{-} + \beta_{+})z}$$

Neglect the non phase-matched terms

Denote the phase mismatch by: $\Delta\beta \equiv \beta_{-} + \beta_{+} - \frac{2\pi}{\Lambda}$ $\beta_{-} = \beta_{+} \implies \Delta\beta = 2\beta - \frac{2\pi}{\Lambda}$

$$\Delta\beta = 0 \implies 2\beta = \frac{2\pi}{\Lambda} \implies \Lambda = \frac{\lambda}{2n_{eff}}$$
 Bragg condition

Solution for mode coupling

$$\rightarrow \frac{dA^{+}}{dz} = -i\kappa A^{-}e^{i2\Delta\beta z}$$

$$\leftarrow \frac{dA^{-}}{dz} = i\kappa A^{+}e^{-i2\Delta\beta z}$$

$$\oplus A^{-}(L) = 0$$

L –length of the corrugated section

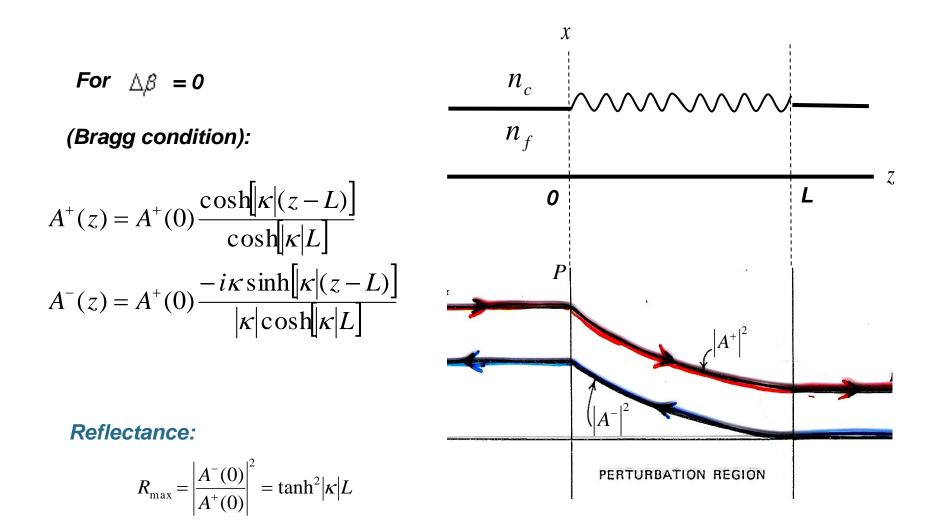
Solution:
$$\longrightarrow A^+(z) = A^+(0) e^{i(\Delta\beta/2)z} \frac{s \cosh s(L-z) + i(\Delta\beta/2) \sinh s(L-z)}{s \cosh sL + i(\Delta\beta/2) \sinh sL}$$

$$\longleftarrow A^{-}(z) = A^{+}(0) e^{-i(\Delta\beta/2)z} \frac{-i\kappa^* \sinh s(L-z)}{s \cosh sL + i(\Delta\beta/2) \sinh sL}$$

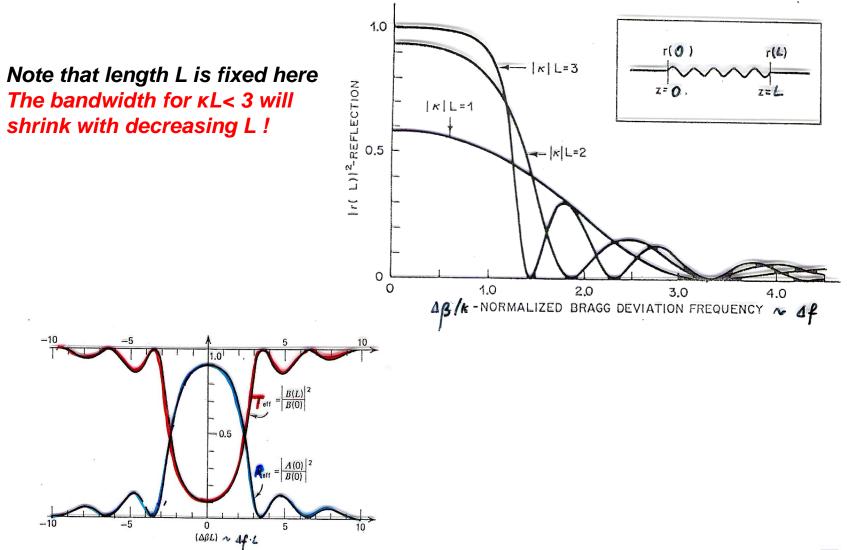
$$S = \sqrt{\left|\kappa\right|^2 - \left(\frac{\Delta\beta}{2}\right)^2} = \sqrt{\left|\kappa\right|^2 - \left[\beta(\omega) - \beta\right]^2}$$

Reflectance:
$$R(s) = \left| \frac{A^{-}(0)}{A^{+}(0)} \right|^{2} = \frac{|\kappa|^{2} \sinh^{2} sL}{s^{2} \cosh^{2} sL + (\Delta\beta/2)^{2} \sinh^{2} sL}$$

Solution at Bragg resonance



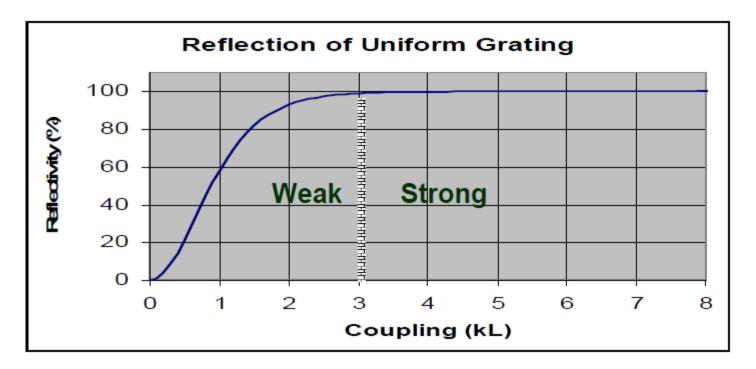
Bandwidth for Bragg gratings



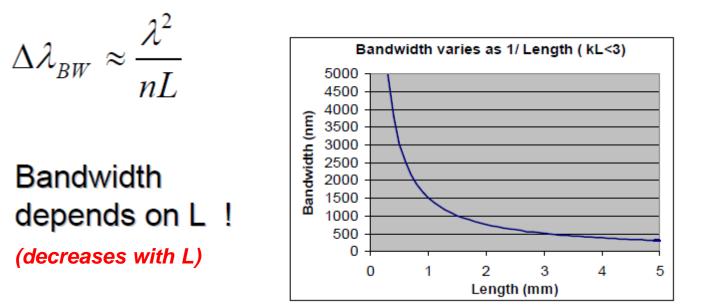
Grating reflectivity

 $R = \tanh^2(\kappa_{ac}L)$

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

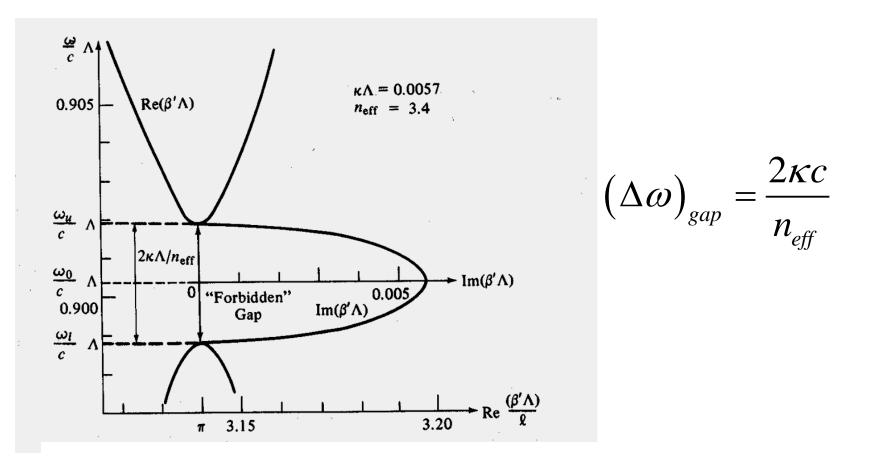


Bandwidth – weak grating

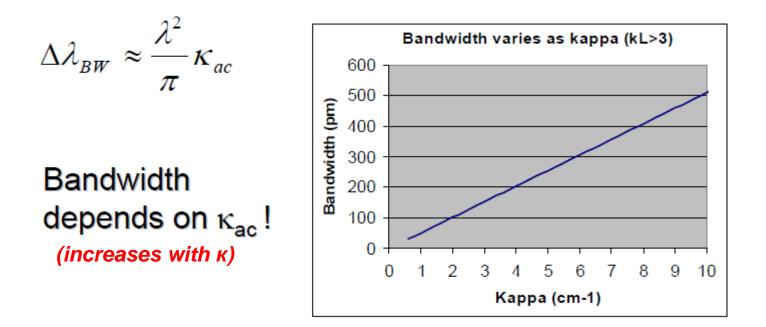


Weak, long gratings are used as wavelength filters

Photonic band gap due to periodicity

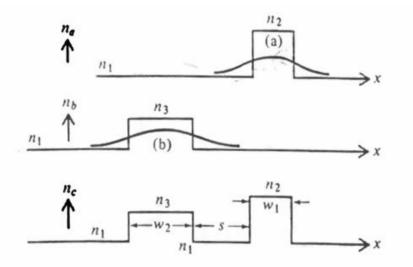


Bandwidth – strong grating

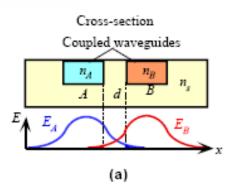


Strong gratings are used as broadband reflectors

Modes coupling in directional coupler



Yariv Chapt. 13



 $E_y = A(z)\mathscr{C}_y^{(a)}(x)e^{i(\omega t - \beta_a z)} + B(z)\mathscr{C}_y^{(b)}(x)e^{i(\omega t - \beta_b z)}$

 $P_{\text{pert}} = e^{i\omega t} \varepsilon_0 [\mathscr{C}_y^{(a)} A(z)(n_c^2(x) - n_a^2(x))e^{-i\beta_a z} + \mathscr{C}_y^{(b)} B(z)(n_c^2(x) - n_b^2(x))e^{-i\beta_b z}]$ $Arm \ a \ \text{sees arm } b \qquad \text{Arm } b \ \text{sees arm } b \qquad \text{as a perturbation} \qquad \text{as a perturbation}$

Coupled mode equations for directional coupler

$$\begin{cases} \frac{dA}{dz} = -i\kappa_{ab}Be^{-i(\beta_b - \beta_a)z} - iM_aA\\ \frac{dB}{dz} = -i\kappa_{ba}Ae^{-i(\beta_a - \beta_b)z} - iM_bB \end{cases}$$

$$\kappa_{ba}^{ab} = \frac{\omega \varepsilon_0}{4} \int_{-\infty}^{\infty} \left[n_c^2(x) - n_{(a,b)}^2(x) \right] \mathscr{C}_y^{(a)} \mathscr{C}_y^{(b)} dx$$

$$M_{(a,b)} = \frac{\omega \varepsilon_0}{4} \int_{-\infty}^{\infty} \left[n_c^2(x) - n_{(a,b)}^2(x) \right] (\mathscr{C}_y^{(a,b)})^2 dx$$

$$\beta \text{ correction}$$

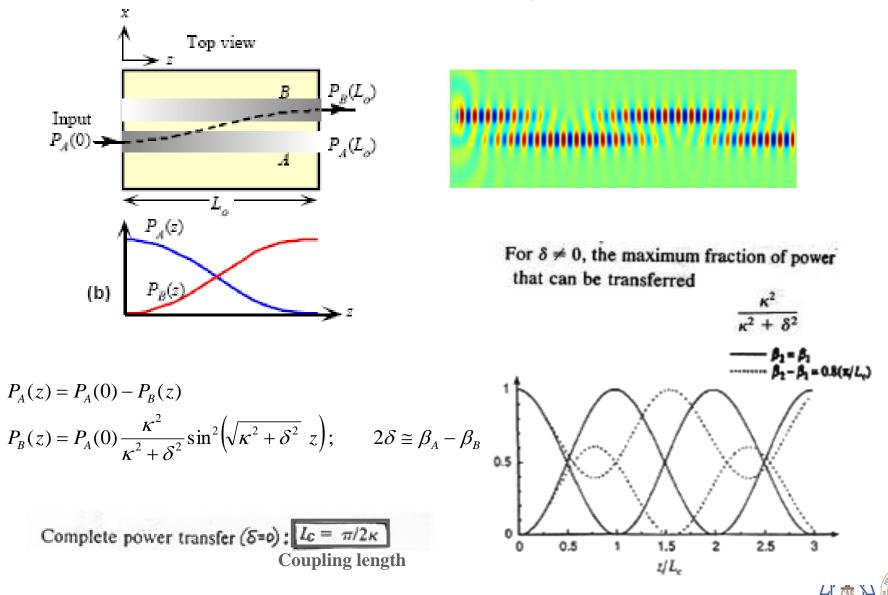
$$E_{y} = A(z)\mathscr{E}_{y}^{(a)}e^{i[\omega t - (\beta_{a} + M_{a})z]} + B(z)\mathscr{E}_{y}^{(b)}e^{i[\omega t - (\beta_{b} + M_{b})z]}$$

$$\begin{cases} \frac{dA}{dz} = -i\kappa_{ab}Be^{-i2\delta z} \\ \frac{dB}{dz} = -i\kappa_{ba}Ae^{i2\delta z} \end{cases}$$

 $2\delta = (\beta_b + M_b) - (\beta_a + M_a)$

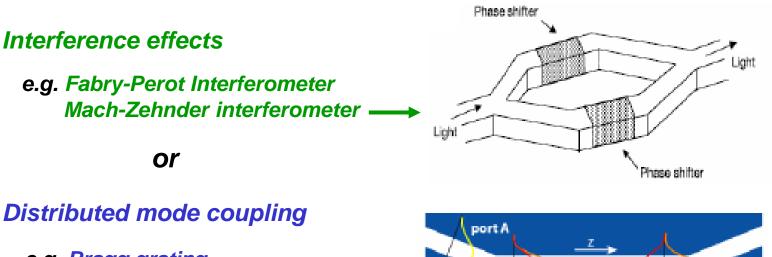
$$A(z) = A_0 e^{i\delta z} \left(\cos sz - i\frac{\delta}{s} \sin sz \right)$$
$$B(z) = -A_0 i e^{-i\delta z} \frac{\kappa}{s} \sin sz$$
$$for: \ \kappa_{ab} = \kappa_{ba} \equiv \kappa \quad s = \sqrt{\kappa^2 + \delta^2}$$

Directional coupler cont.

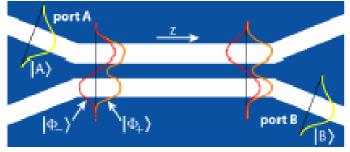


Coupling and Interference

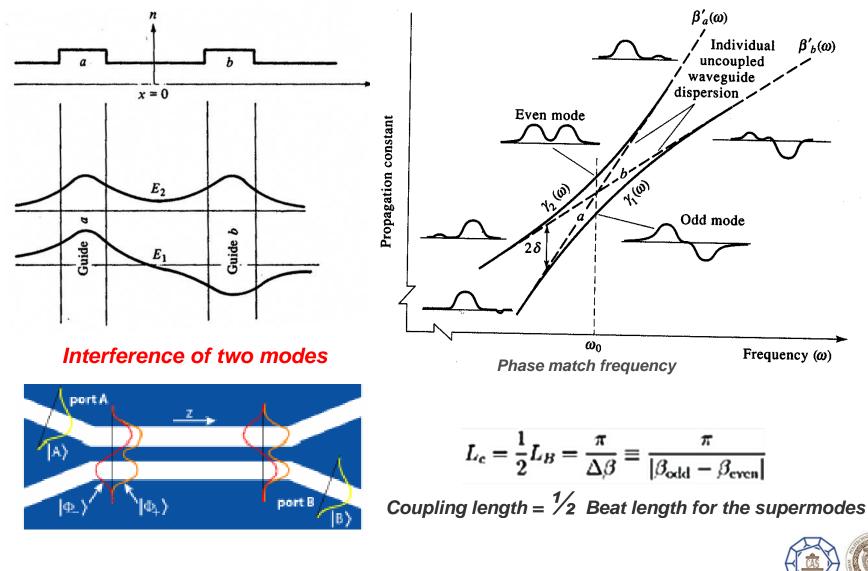
Switches and multiplexers based on planar waveguides or fibers typically utilize:



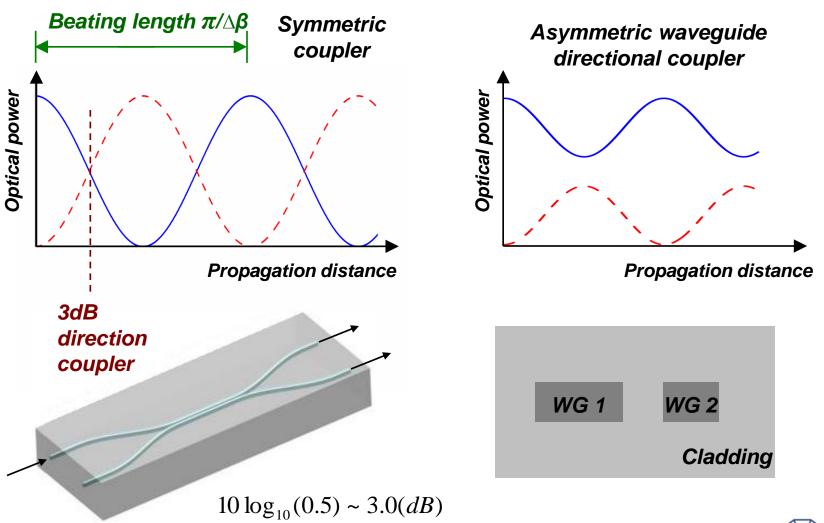
e.g. Bragg grating Directional coupler ?



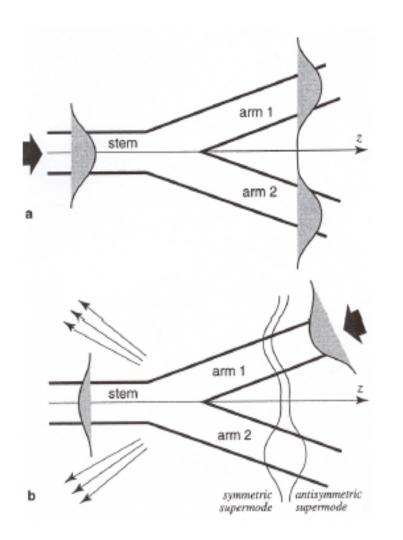
Directional coupler – Eigen ("super") modes



Directional coupler



Y-junction



- Y-junctions can be used to split or combine signals
- They are found in a number of WDM components

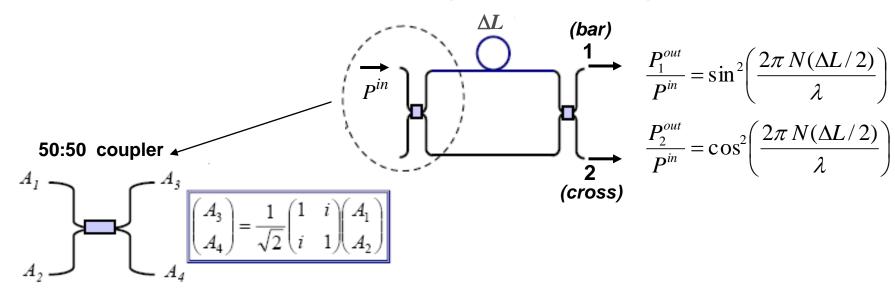
The functioning of Y-junctions can be discussed using the concept of supermodes:

splitting: the modal field distribution is adapting to the change in cross section (adiabatic transition). Power conservation occurs only if the change in cross-section is slow enough

backward direction: the mode can be decomposed in symmetric ands antisymmetric supermodes. The antisymmetric supermode is radiated at the junction. Half of the power is lost.

Mach Zehnder Interferometer (MZI) demultiplexer

Consider both arms be identical waveguides but their length differs by ΔL



There is a $\pi/2$ phase shift for the cross signal!

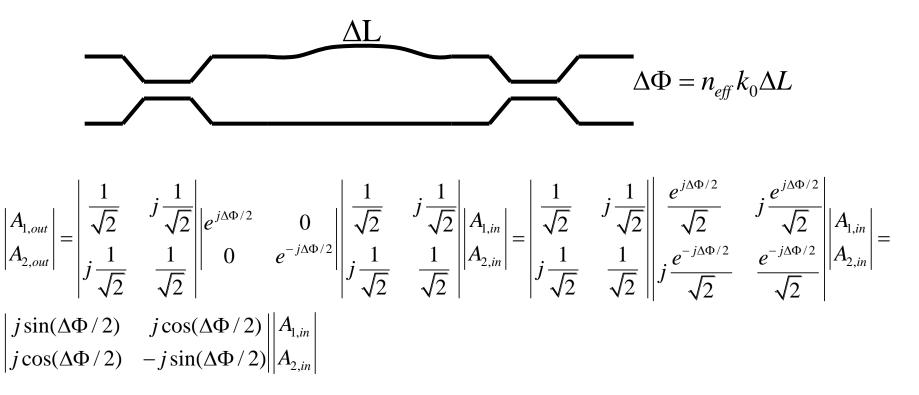
All the power at λ_1 will exit from port 1 and all the power at λ_2 from port 2 if:

 $\pi N \Delta L(1/\lambda_1) = \pi/2$ and $\pi N \Delta L(1/\lambda_2) = \pi$

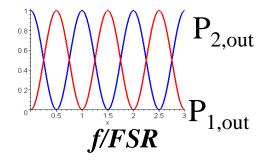
Hence:

$$\Delta L = \{2n_{\text{eff}}[(1/\lambda_1) - (1/\lambda_2)]\}^{-1}$$
$$= c/(2n_{\text{eff}}\Delta v)$$

MZI interleaver

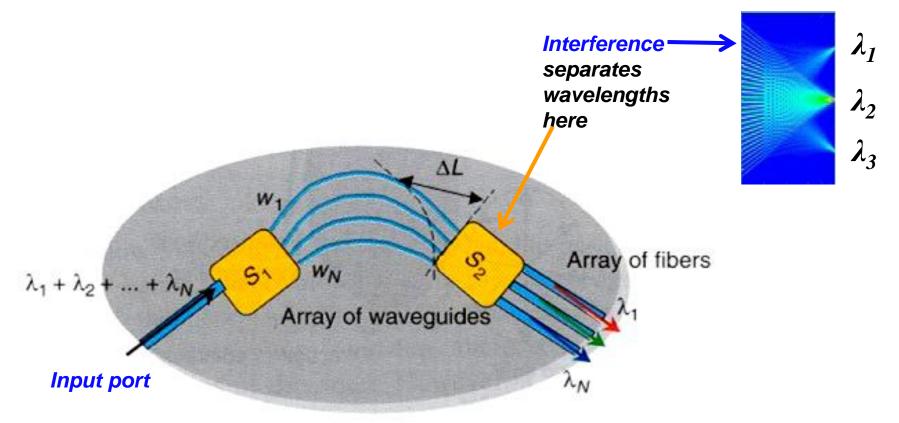


For: $A_{1,in} = A_0 \text{ and } A_{2,in} = 0$ $FSR = c / n_{eff} \Delta L$ $P_{1,out} = P_0 \sin^2(\Delta \Phi / 2) = P_0 \sin^2(\pi n_{eff} \Delta L f / c) = P_0 \sin^2(\pi f / FSR);$ $P_{2,out} = P_0 \cos^2(\Delta \Phi / 2) = P_0 \cos^2(\pi n_{eff} \Delta L f / c) = P_0 \cos^2(\pi f / FSR);$



Frequency silicer / DWDM interleavers - separates a series of optical channels so alternating wavelengths emerge out its two ports

Arrayed Waveguide Grating de-multiplexer



S₁, S₂ - "star couplers" or free space couplers

The coupling behavior of coupler S_2 depends on both λ_n and the location of the input port (which determines phase delay in S_1)

Picture of AWG from S.V. Kartalopoulos