

ADVANCED BAINITIC STEELS: TRANSFORMATION, MICROSTRUCTURE AND PROPERTIES.

DR CARLOS GARCIA-MATEO

Wykł.	Data/Godzina	Tytuł	Onic
nr	sala	ιγια	Opis
1	23.02./14h15	Bainitic transformation:	In this work a description of the phase transformation principles governing bainite
	WIM PW	going through some of	transformation will be presented. The talk is intended to set the ground on the basics of
	ul. Woloska 141	the basics	the diffusionless transformation theory that will be used and further detailed in some of
	s.215		the latter lectures.
2	24.02./14h.15	Characterisation of	For what and how we use some of the most common ,and not that common,
	WIM PW	Nanostructured Bainite	characterisation techniques in order to extract basic information on bainite, from the
	ul. Woloska 141	I- Relevant Techniques	macro to the atom level.
	s.215		Covering:
			- High resolution Dilatometry
			- XRD
			- TEM & HRTEM
			- 3D Atom probe tomography (APT)
3	25.02./14h15	Characterisation of	The complementary use of some of the described techniques allowed a deeper
	WIM PW	Nanostructured Bainite.	understanding of some the insights of nanostructured bainite.
	ul. Woloska 141	II-Complementary Use of	Two case studies are presented:
	s.215	Different Techniques	1- Estimation of dislocation density during bainitic transformation of a nano structured
		(Case studies)	steel by high resolution dilatometry and X-ray.
			2- Understanding the C journey in Nanostructured bainite, an X-ray, APT & HRTEM study.
4	26.02./10h15	Contributing Factors to	Giving the importance that the scale of the bainitic ferrite plate has on the mechanical
	WIM PW	the Scale of Bainitic	response of these microstructures, it is important to understand the contributing factors
	ul. Woloska 141	Ferrite. Measurement	that control its final thickness. Also, a practical case on the measurement of such
	s.215		magnitude, in a nano and sub-micron bainitic steel, will be presented.

Lecture co-financed by the European Union in scope of the European Social Fund

-	2 02 /42445	Deinitie Cheeler	Details and mentor site and both and an illusion with starts when they also a surger
5	2.03./12n15	Bainitic Steels:	Bainite and martensite are both non equilibrium microstructures, they share common
	WIP PW	Tempering.	transformation mechanisms and some microstructural features as ferrite C enrichment
	ul. Narbutta 85		and high dislocation density. Therefore it is not strange that all the tempering theory
	s. 129NT		developed around martensite fits, quite well, also with bainite. In this talk we revise
			some general and important concepts regarding the tempering of bainite, and we end up
			the chapter with a very detailed study, up to the atomic scale, of the tempering of a new
			class of bainitic steels, nanostructures steels.
6	3.03./12h15	Microstructure-Properties	Bainitic microstructures have revealed a plethora of unique microstructural and
	WIP PW	Relationships in Bainitic	morphological particularities direct consequence of the atomic mechanisms that rule
	ul. Narbutta 85	Steels	bainitic transformation. Understanding the different and complex relationships between
	s. 129NT		the mechanical properties and those microstructural features has turned out into a very
			difficult task with more than one possible solution, but on the other hand, absolutely
			necessary to understand the mechanisms governing these properties and for further
			development of these grades.
			This talk intends to present an overview of some of the most relevant advances done in
			this field.
7	5.03./12h15	Revealing tensile	Practical examples of the ways and means as well as the results obtained during
	WIP PW	properties of nano	investigations regarding the microstructure – strength/ductility relationships in different
	ul. Narbutta 85	bainitic steels. Case	nanostructured bainitic steels will be presented. Special emphasis will be put in the
	s. 129NT	studies	description of the ductility and TRIP effect in these novel microstructures
8	6.03./12h15	Tools for the Design of	Nanostructured mixed microstructures consisting of very thin plates of bainitic ferrite
	WIP PW	(Fast) Nanocrystalline	separated by carbon enriched austenite are the main characteristics of the novel
	ul. Narbutta 85	Bainitic Steels	NANOBAIN steel family. This study revises the essential principles in order to optimize
	s. 129NT		such microstructure with the aim of ascertain how far all these concepts could be
			extended to design a new generation of inexpensive bulk nanostructured steels, in
			absence of the use of sever deformation, complex mechanical processing or rapid
			cooling. A revision of some of the alternatives to accelerate the otherwise sluggish
			transformation of this alloys will be presented.

Lecture co-financed by the European Union in scope of the European Social Fund

